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Ah&act--Motivated by a geological problem, the continuum conservation equations governing the trans- 
port of hN:at, mass and momentum in a deformable multicomponent mush undergoing solid-liquid phase 
change are presented, and a one-dimensional (1-D) model of a layer heated from below investigated 
numerically. The results indicate that phase transport exercises a strong control on heat transport. The 
form of the spatial distribution of liquid depends upon the relative transport rates of heat and buoyant 
liquid ; a high porosity wave may develop at the top of the mixed phase region, the amplitude of which 
increases with time until the contiguity of the solid matrix breaks down and a slurry forms. Phase 
compositions are fixed by the requirement of local thermodynamic equilibrium, and are deduced from 

published equilibrium phase change experiments. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Most common rock types are complex, non-eutectic, 
multicomponent substances which undergo solid- 
liquid phase change over a temperature and pressure 
range, leading to the formation of a mixed phase 
region in which solid and liquid phases coexist. Often 
the phases are mobile, and during phase change 
migrate relative to one another, resulting in their par- 
tial or complete separation ; this occurs when melt 
segregates from a melting rock, or crystals separate 
from a solidifying magma. A quantitative under- 
standing of these coupled phase change and phase 
transport processes is of fundamental importance in 
the earth scienci:s, because they are responsible for the 
origin and chemical diversity of all the igneous rocks. 

Interest in binary and multicomponent phase 
change spans a range of scientific and engineering 
disciplines, including metallurgy, materials science 
and the earth sciences, and has motivated the devel- 
opment of an increasing number of quantitative trans- 
port models [l-5]. Most of these concern binary phase 
change systems such as metallic alloys, and have been 
applied to solid.ification processes such as casting and 
welding [68]. I[n contrast, few quantitative transport 
models of me1 ting processes have been developed 
which can be applied to geological systems. Models 
developed for metallurgical systems can rarely be 
directly applied to geological systems, because of 
differences in the rheological properties and initial and 
boundary conditions of the mixed phase region [9]. 

When a rock composed of silicate minerals melts, 

the solid fraction maintains a continuous connecting 
matrix, termed a mush, until the liquid volume frac- 
tion exceeds a certain value, which is usually termed 
the ‘Critical Melt Fraction’ (CMF) [lo, 111. If the 
surface topology of the solid grains is in local thermo- 
dynamic and mechanical equilibrium, the liquid 
fraction collects along grain edges and may form an 
interconnected network, in which case the solid matrix 
is permeable [ 12-141. Phase change models of metal- 
lurgical mushes usually assume that the matrix is rigid 
[3-5, 151; in geological systems, liquid enhanced 
diffusional creep processes provide a mechanism for 
changing the morphology of the solid matrix, so that 
on a macroscopic scale the matrix is not rigid, and will 
viscously deform in response to liquid phase transport 
[l&18]. 

Previous quantitative models of liquid transport 
through a melting, deformable mush have decoupled 
the phase change and phase transport processes, and 
have either neglected phase change entirely, or have 
externally imposed the rate of phase change [19-221. 
Whilst this approximation is valid for some geological 
systems, phase change and phase transport are usually 
complementary processes which cannot be decoupled. 
Often a mixed phase region is produced when rock is 
heated from below; for instance, when hot magma 
intrudes the lower continental crust as a horizontal 
layer, causing melting in the overlying rock [23, 241. 
The liquid produced is usually compositionally and 
thermally buoyant, so a pressure gradient is present 
to drive liquid migration relative to the solid matrix. 
The system is complex because compositional gradi- 
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NOMENCLATURE 

z 
solid phase grain radius l- rate of production of phase 
constant in permeability relationship K,~ dimensionless effective thermal 

CP specific heat capacity diffusivity 
c,= effective specific heat capacity 0 equilibrium liquid volume fraction ; 
C compaction rate numerically equivalent to the 
D normalized difference between isotherm dimensionless temperature 

positions [equation (46)] P shear viscosity 

rg 
gravitational acceleration 

; 
equilibrium phase volume fraction 

interphase force per unit volume bulk viscosity 
k thermal conductivity P density 
k permeability a stress tensor 
K characteristic permeability 7 characteristic timescale 
f unit vector, vertical 0 characteristic velocity. 
L specific latent heat 

% 
exponent in permeability relationship 
pressure Subscripts 

Ste Stefan number b value at z = 0 
t time pertaining to the ith isotherm 
T temperature ; liquid 
V velocity vector liq liquidus 
W vertical component of velocity m mixture 
Z vertical Cartesian coordinate. S solid 

sol solidus. 
Greek symbols 

6 characteristic lengthscale 
4 liquid volume fraction (porosity) Superscripts 
rp equilibrium liquid volume fraction at 1 liquid 

z=o S solid. 

ents exist in both phases, and the phases may interact 
and exchange components during phase transport 
PI. 

Motivated by this geological problem, the aim of 
this paper is to present a model for the transport of 
heat, mass and momentum in a viscously deformable, 
multicomponent mush which is undergoing solid- 
liquid phase change due to heating from below. A 
continuum approach is adopted, because continuum 
formulations are well suited for modelling the tran- 

of the z = 0 plane is instantaneously increased to a 
temperature Tb which is greater than the solidus of the 
overlying material and is, subsequently, maintained at 
this temperature for all time (Fig. 1). Solid-liquid 
phase change in the material leads to the formation 
of a mushy mixed phase region adjacent to the z = 0 
plane. The liquid phase produced is buoyant and inter- 
connected ; the solid phase can viscously deform in 
response to liquid phase transport. Liquid and solid 
phases are assumed always to be in local thermo- 

sition between solid and liquid phases over a tem- dynamic equilibrium. 
perature and pressure interval, with associated latent 
heat evolution and coupled transport processes [l]. 
Although motivated by a geological problem, the for- 
mulation presented here may be applied to any melt- 
ing, multicomponent system in which fluid migration 
coupled with solid deformation is an important 
process, and which satisfies the assumptions made in 
deriving the governing equations. 

c 

solid material 
initially at its 
solidus 61 

Consider a homogenous, isotropic, multi- 
component material which is initially at its solidus rol 

c 
temperature T,,, and which is semi-infinite in the posi- Fig. 1. The development of a mushy mixed phase region due 
tive z (vertical) direction. At t = 0 the temperature to heating from below. 

-solidus isotherm - 

2. MODEL FORMULATION 
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2.1. Conservation equations 
The equations governing conservation of mass, 

energy and momentum in the mixed phase region are 
presented in Cartesian coordinates throughout, with 
z positive upwards. Assuming there are no void spaces 
or other phases present in the mixed phase region, the 
statement of conservation of mass of the liquid and 
solid phases may be expressed in terms of the liquid 
volume fraction (porosity) 4 as [l-5, 19-221 

~@,4)+W,4v,) = l-1 (1) 

~(P,(l-.9))+v.@,(l-~)v,) = --l-l. (2) 

Neglecting kinetic energy, the rate at which surface 
stresses do work on the solid and liquid, the work 
done by body fo:rces, and assuming there is no internal 
heat production, and given that the mixed phase 
region is assumed to be in local thermodynamic equi- 
librium, the statement of conservation of energy in 
the mixed phase region may be expressed as [ 1, 191 

with 

-t. (1 - d)p& - VT+ (6&v, . VT (3) 

k, = (1 -c$)k,+c$k,. (4) 

Derivation of the statement of conservation of 
linear momentum in the mixed phase region requires 
specific consideration of its structure and rheology. 
Assuming that the pressures in the solid and liquid 
phases are equ,al, that both phases may be treated 
as Newtonian fluids which are incompressible at the 
microscale, that the rate of change of momentum in 
each can be neglected, that the Reynolds number of 
each is small compared to unity, and that the body 
force acting upon each phase is due only to gravity, 
then conservation of linear momentum in the liquid 
and solid may be expressed as [l] 

\7~(~a,)--p,~gl;-I = 0 (5) 

V*((l -&a.)-p,(l-+)gff+I = 0. (6) 

Note that the interphase force per unit volume (I) 
acting upon the solid is equal and opposite to that 
acting upon the liquid, and so satisfies Newton’s third 
law [26]. The interphase force per unit volume may be 
expressed as 

I = C(v,-v,)-PV#J (7) 

where the value of C depends upon the distribution 
of phases within the mixed phase region [19]. Sub- 
stituting equation (7), and the standard equation for 
the stress tensor within an incompressible fluid [27] 
into equation (5), and simplifying, yields 

4 v,-v, = - $(P+p,gz). (8) 

If v, = 0 then equation (8) corresponds to D’Arcy’s 
law with 

c = /L,#fk. (9) 

The deformable solid matrix will expel the liquid 
phase if subjected to isostatic compression, and may 
be treated on the macroscopic scale as a viscous, com- 
pressible fluid [19,28]. Substituting equations (7), (9), 
and the standard equation for the stress tensor within 
a compressible fluid [27] into equation (6) and sim- 
plifying assuming that the bulk and shear viscosities 
of the matrix are constant, yields 

VW+P,LrZ) = (L+f!4V(V.v,) +pL,v=vs 

- (1 -4)(Ps -P&G. (10) 

Summation of equations (8) and (lo), having sub- 
stituted for C in equation (8) using equation (9), yields 
the statement of conservation of linear momentum in 
the mixed phase region, valid if the liquid volume 
fraction does not exceed the CMF [19] 

( > e,+fn V(V-v,) = ~(v,-v,)-p.v2v, 

+(1-4NPs-Pl)g~. (11) 

Practical use of this expression requires that the 
permeability of the solid matrix be specified. Gener- 
ally, for an isotropic matrix, permeability may be 
related to porosity by an equation of the form 

k = ba2f(4) (12) 

where b is a constant, and a is the radius of the solid 
grains [29]. The form off(4) and value of b depend 
upon the microscopic distribution of the liquid phase. 
Several expressions forf(4) have been proposed [e.g. 
28, 291; a simple, commonly used form, based on 
the BlakeKozeny-Carman equation, yields the 
permeability-porosity expression 

k = ba24 

where n varies between 2 and 3 [28]. 

(13) 

2.2. Phase compositions and the rate ofphase change 
To close the system of conservation equations, the 

rate of phase change and the composition of each 
phase must be specified. The rate of phase change is 
dictated by the rate at which the phases experience 
changing thermodynamic conditions ; in this system, 
a phase may experience changing thermodynamic 
conditions both because the conditions throughout 
the mixed phase region are changing temporally, and 
because the phases are migrating through conditions 
which vary spatially. Migration may occur because 
the mixture itself is mobile, and because the phases 
migrate relative to the mixture. Consequently, the net 



1038 M. D. JACKSON and M. J. CHEADLE 

rate of change of thermodynamic conditions experi- 
enced by the phases at any point is given by 

f(P> T) = $f(P, T)) + (v, +v, -v,) * V(f(P, VI 

(14) 

where v, is the mass averaged mixture velocity 

v, = P,~vilPnl+PS(l -~)vslPln 

and the mixture density is given by 

(15) 

Pm = dP, + (1 - &)PS. (16) 

If a system is in local thermodynamic equilibrium, 
phase change may be related to the thermodynamic 
conditions by a suitable equilibrium phase diagram or 
phase distribution curve [l, 3,4,9]. Phase distribution 
curves give the volume fraction and composition of 
each phase present at given thermodynamic con- 
ditions ; they have been derived for several commonly 
occurring silicate rock types [e.g. 30-321. Once the 
equilibrium liquid volume fraction v, is known as a 
function of the thermodynamic conditions, equation 
(14) may be rewritten in terms of prv,, and the rate of 
solid-liquid phase change is given by 

I-, =@,T) =F+(v,+v,-v,).V(p,v,). (17) 

The second term on the right-hand side of equation 
(17) demonstrates that relative phase transport 
coupled with local thermodynamic equilibration leads 
to component exchange between solid and liquid 
phases. A full continuum description of a multi- 
component system would strictly require an explicit 
statement of conservation of mass for each compon- 
ent, but for most geological materials this would lead 
to a prohibitive increase in the complexity of the for- 
mulation due to the large number of components pre- 
sent [9]. In the system discussed here, phase com- 
positions are fixed by the requirement of local 
thermodynamic equilibrium, and may be deduced at 
given thermodynamic conditions using empirical data 
derived from equilibrium melting experiments. Conse- 
quently, we neglect an explicit description of mass 
conservation for each component. We believe this 
approach is no less rigorous than one in which macro- 
scopic continuum equations for each component are 
explicitly stated, because in the absence of an atomic 
level description of the system, component exchange 
must in any case be deduced from empirical data [ 1, 
3941. 

2.3. A one-dimensional Boussinesq model of the mixed 
phase region 

Equations (l), (2), (3), (1 l), (13) and (17) together 
with the necessary empirical data represent a complete 
description of the system, but the task of solving them 
would be considerable. At this stage, in order to iden- 
tify the generic features of the system, we will consider 

a simplified one-dimensional (1-D) subset of the gov- 
erning equations and investigate the solutions numeri- 
cally. An understanding of the essential physics may 
then lead to the solution of more complex formu- 
lations. 

Expressed only in terms of vertical velocity com- 
ponents, the governing equations become 

; (Pld) + ; hh) = 6 

$&(l-@)+ &(1-&w,) = -6 (19) 

(21) 

r, =~+(~,+~,-lt.,j!%$! (22) 

subject to the initial and boundary conditions 

T(z, 0) = Tsoi (23a) 

$(z,O) = v,(z,O) = Wl(Z,O) = WS(Z,O) = 0 (23b) 

T(O, 0 = Tb T(z,,,> 0 = r,,, (23~) 

v,(O, t) = v; v,(z,,, t) = 0 (234 

wI(O,t) = w,(O, t) = w(z,,~, t) = w,(z,,,, t) = 0 We) 

where v\ denotes the equilibrium liquid volume frac- 
tion at z = 0, and z,,, denotes the time-dependent pos- 
ition of the solidus isotherm, which defines the “top” 
of the mixed phase region (Fig. 1). 

Applying the Boussinesq approximation, sub- 
stituting equation (18) in equation (19), and inte- 
grating subject to the condition that w, = w, = 0 at 
z = 0 yields [19] 

4w, = - (1 -$)w,. (24) 

Assuming that the thermodynamic properties of the 
solid and liquid are constant and identical, sub- 
stituting equation (24) into equations (18)-(22), and 
simplifying yields 

P~J --P& -ddw,) = r, (25) 

i > 
L+ $4 $+#J)(p,--p,)g-~ (27) 
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Note that in the heat conservation equation (26), the 
velocity terms which describe advective heat transport 
have now cancelled. Physically, this is because the 
upwards advection of hot liquid is exactly balanced 
by the downwards advection of cold solid, so heat 
transport occurs only by conduction and latent heat 
exchange during phase change. 

Phase change due to heating may be expressed as a 
function of temperature only, and for simplicity a 
linear variation of equilibrium liquid volume fraction 
with temperature will be used 

T- Tso, 
v’=w- (29) 

This is a reasonable approximation for a range of 
silicate rock types [.30-321. In addition, latent heat will 
be assumed to be released linearly as phase change 
proceeds [33]. A convenient scheme for non-dimen- 
sionalizing temperature may be obtained from equa- 
tion (29) ; by writing 

T’ = T- Tso, 
T,q - Tso, (30) 

the dimensionless temperature T’ is numerically equi- 
valent to the equilibrium liquid volume fraction v,. In 
the interests of clarity, a new variable 6 will be invoked 
which represents both these quantities ; i.e. 0 = T’ = 
vl. Liquid volume fractions may be normalized by 
writing 

8’ = eiql, (314 
Tb - Tso, with cp = ___ 
T,, - Tso, 

cb’ = +I!& (31b) 

where the scaling factor cp denotes both the equi- 
librium liquid volume fraction, and the dimensionless 
temperature, at z := 0 ; i.e. cp = r, = vt. Assuming a 
constant density contrast and liquid shear viscosity, 
the remaining variables may be non-dimensionalized 
by writing [ 191 

t’ = t/z, withr = (1 -cp)(&-p,)g 
1 (&.+X4r,/3))“2 

(33) 

w’ =L w/w, with w = KC1 - CPNPS - PJS 
PI 

(34) 

k’ = X:JK, with K = bdrp”. (35) 

Substituting equation (28) into equations (25) and 
(26), substituting equation (13) into equation (27), 
substituting the scaled and dimensionless variables 

(3 l)-(35), simplifying, and dropping primes yields the 
dimensionless governing equations 

with 

ae a*8 
5 = Keff az2 - - Ste(w, + w, 

azw W8 U--4) -_=_++ 
az* 4 u-cp) 

cpdw = - (1 -cp$)ws 

kz 
K -- a - /we&* 

Ste = 
L 

Cd& - God 

L 
c eff = cp + qi, _ T,,, . 

WI+- w,); (36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

We have chosen not to substitute for w, using equation 
(39), because in this form, the effect of the net phase 
velocity (w, + w,) on the governing equations is clear. 
The initial and boundary conditions become 

e(z,o) = 4(z,O) = w,(z,O) = w,(z,O) = 0 (434 

e(0, t) = i eczo, t) = 0 WI 
w,(O, t) = w,(O, t) = w,(zo, t) = w,(zo, t) = 0 (43c) 

where z0 denotes the position of the 6 = 0 isotherm. 
As discussed by [9, 151, the results of binary and 

multicomponent phase change models are difficult to 
generalize, because of the large number of governing 
parameters and wide variety of naturally occurring 
equilibrium phase fraction distributions. Using suit- 
able approximations, assuming a linear equilibrium 
liquid volume fraction distribution, and non-dimen- 
sionalizing, we have reduced the model description to 
a system of four coupled equations in four unknowns, 
governed by four externally prescribed dimensionless 
parameters : IC,~, Ste, n and cp. The equations are amen- 
able to solution using standard numerical techniques; 
in the next section we present the results of numerical 
experiments designed to characterize the system in 
terms of the external parameters. 

3. RESULTS 

Equations (36)-(39) were approximated using 
explicit finite difference schemes [34], and solved 
numerically using FORTRAN codes [35] processed 
on a Sun SPARC 5 workstation. CPU times increased 
with increasing IC,, from several minutes to several 
hours. Accuracy of the finite difference scheme for 
equation (37) was tested against a published analytic 
approximation to the solution of a diffusion-advec- 
tion problem [36] ; accuracy of the scheme for equa- 



1040 M. D. JACKSON and M. J. CHEADLE 

tions (36) and (38) was tested against the published 
analytic solution for a solitary porosity wave with 
n = 3, no phase change (r, = 0), and in the limit of 
small background porosity [2 11. All numerical exper- 
iments were performed using a value of n = 3, to allow 
comparison with the analytic solution. 

We chose to investigate the numerical solutions for 
a variety of values of cp and Ste, over a fixed range of 
K,~ between - lo-* and -lo+*. This range is rep- 
resentative of most silicate rock phase change systems, 
and its size reflects the uncertainty in estimated values 
of the matrix bulk and shear viscosities, which appear 
in the definition of IC,~ [equation (40)]. The resistance 
of the matrix to deformation by liquid enhanced creep 
processes is governed by the diffusion of components 
along grain boundaries [17]. The bulk and shear vis- 
cosities are, therefore, functions of the diffusion rates 
of individual components, and of the porosity and 
grain size, which dictate the effective diffusion length- 
scale [ 17, 181. Diffusion rates are poorly constrained, 
and their effect upon the bulk and shear viscosities 
of a deformable, multicomponent mush is unknown. 
Consequently, matrix bulk and shear viscosities are 
poorly constrained ; estimates for partially molten 
rocks range from 10” to 10” Pa s. 

Neither cp or Ste are independent of K.~; sub- 
stituting equations (32) and (33) into equation (40) 
reveals that K,~ varies with cp as 

GT - l/(1 -(P)rP”’ (44) 

while both Ste and K.~ are governed by the values of 
the thermal parameters L, cP, T,i, and T,,,. However, 
re-writing the expression for the Stefan number as 

Ste = 
L 

c,(T,iq-T,,i)+L 
(45) 

it is clear that it is constrained to lie between 0 and 1, 
whereas for a fixed value of Ste, K,~ may still vary over 
effectively our entire chosen range. Consequently, in 
all our numerical experiments we have assumed Ste is 
independent of K,@ 

3.1. Relative importance of conduction and pseudo- 
advection during heat transport 

Models of heat transport within a mush often 
assume conduction is the dominant transport mech- 
anism, implicitly assuming that phase transport has 
negligible effect on heat transport [6, 7, 91. In our 
model, phase transport affects heat transport due to 
the exchange of latent heat during local thermal equi- 
libration, and is described in the energy conservation 
equation (37) by the second term on the right-hand 
side, which we refer to as a ‘pseudo-advection’ term. 
Heat transport is governed externally by the dimen- 
sionless effective thermal diffusivity (K~), and the 
Stefan number (Ste). The Stefan number represents 
the ratio of latent heat to effective specific heat during 
phase change ; for Ste = 1 all heat is exchanged as 

latent heat, while for Ste = 0 all heat is absorbed as 
specific heat. 

To assess the importance of phase transport on heat 
transport, the governing equations were solved with 
Ste = 1 (maximum pseudo-advection), and with 
Ste = 0 (conduction only). The difference between the 
resulting thermal profiles was measured as a function 
of K,~ by recording the difference between the pos- 
itions of selected isotherms, and normalizing them to 
the conductive case 

Di = Zi(Sk?= I ) - Zi(Sre= 0) 
Zi(sre=cl) 

A value of D, = 0 indicates that the isotherm positions 
are identical, and that heat transport is dominated by 
conduction, whilst a value of Di = 1 indicates that 
they differ significantly and that heat transport is 
dominated by pseudo-advection. Figure 2 shows the 
normalized difference between the z,,~, z~.~ and z,, iso- 
therms after 30 time units, as a function of K.=, for 
three values of cp. In all cases, for large values of 
K,@ heat transport is dominated by conduction. With 
decreasing K,*, pseudo-advection becomes increas- 
ingly important, and dominates for values of K,~ in 
the range 1O-7-1O-2. Conduction then becomes 
increasingly significant for small as well as large values 
Of Kew 

Lowell and Bergantz [25] investigated heat trans- 
port in a deformable binary mushy zone heated from 
below, and concluded that for large K,~ (their “dimen- 
sionless conduction lengthscale”) and small Ste, heat 
transport is dominated by conduction, whilst for small 
K,~ and large Ste, heat transport is dominated by 
pseudo-advection (their “compaction dominated”). 
Their treatment neglects the effect of the net phase 
velocity (w,+ w,) on the magnitude of the pseudo- 
advection term, and consequently fails to predict the 
increasing significance of conduction for small values 
of K,~, which, as discussed in Section 3.2, is due to the 
effect of the net phase velocity. 

3.2. Form of the liquid volume fraction (porosity) 
distributions 

Figure 3(a)-(d) shows a representative selection of 
normalized spatial porosity and equilibrium liquid 
volume fraction (dimensionless temperature) dis- 
tributions, for the case cp = 0.5, after 30 time units 
have elapsed. For large K,* (3 IO’), there is little 
difference between the porosity and the equilibrium 
liquid fraction distributions [Fig. 3(a)]. For K,# 

between -lo4 and - 10, the upwardly migrating 
liquid develops a high amplitude “porosity wave”, 
and trailing porosity waves begin to develop behind 
the leading wave [Fig. 3(b)]. In this range, as K,~ 
decreases, the amplitude of the leading wave increases, 
and the position of the porosity maximum moves 
closer to z,,. For IC,~ between - 10 and - 10w3, the 
trailing waves are well developed, and display decreas- 
ing amplitude with depth [Fig. 3(c)]. In this range, 
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Fig. 2. Na’nnalized difference between the z,,~, ,z,,~ and z, isotherms for the Ste = 1 (maximum pseudo- 
advection) and Ste = 0 (conduction only) cases, as a function of K,#, after 30 time units, with : (a) cp = 0.5 ; 

(b) cp = 0.3 ; (c) cp = 0.1. 

as rcerr decreases, the amplitude of the leading wave 
decreases, the position of the porosity maximum 
moves closer to r,,, and the wave frequency increases. 
For small IC,~ (,< 10e4), the porosity distribution 
breaks down into a series of upwardly propagating, 
small amplitude waves [Fig. 3(d)]. 

The spatial porosity distribution depends upon the 
relative rates of upward transport of liquid and heat, 
which for a particular value of cp is primarily governed 
by the magnitud.e of K,= Using equations (37) and 
(39) the mass conservation equation (36) may be 
written in a form more open to physical interpretation 

a4 - = -CfK.~~+(l-Sre)(w,+w,)~ (47) at 

with 

c = ~wd. 

C, governs the compaction rate, and demonstrates 
that gradients in the liquid phase flux (&v,) cause local 
changes in porosity. If the liquid phase flux at any 
point increases with height the compaction rate (C) is 
positive, the porosity locally decreases, and the 
deformable matrix compacts to occupy the space pre- 
viously occupied by liquid. Conversely, if the liquid 
phase flux decreases with height the compaction rate 
is negative, the porosity locally increases, and the 
deformable matrix dilates to accommodate the 
accumulating liquid. The second and third terms are 
source terms which describe phase change due to con- 
ductive heat transport, and phase change due to 
pseudo-advective heat transport respectively. 

For the case Ste = 1, the pseudo-advective source 
term is zero, so porosity change is governed by the 
relative magnitudes of the compaction and con- 
duction terms only. Large values of K,~ result from 
conditions which promote slow liquid transport but 
rapid conductive heat transport, such as small matrix 
grain size, high liquid phase viscosity, and high ther- 
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Fig. 3. Normalized spatial porosity and equilibrium liquid volume fraction distributions, after 30 time 
units, with: (a) rcsfi = lo’, cp = 0.5, Ste = 1; (b) ice8 = 100, rp = 0.5, Ste = 1 ; (c) uea = 1, cp = 0.5, Ste = 1 ; 
(4 ~.tf = 10-4, rp = 0.5, Ste = 1; (e) rccfl = 1, cp = 0.5, Ste = 0; (f) I+ = 1, qn = 0.3, Ste = 1. Liquid volume 
fractions are normalized to the equilibrium liquid volume fraction at z = 0 (cp). Note both ordinate and 

abscissa axis scales differ between plots. 
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ma1 conductivity [equation (40)]. Consequently, for 
large rc,=, the consductive heat transport term domi- 
nates the compaction term, and equation (47) can be 
approximated as 

a+ ae a28 
--z--_ 

at at - JGff,,z. 

As IC,~ decrease,s, the rate of liquid phase transport 
increases relative to the rate of heat transport, until 
the liquid phase migrates upwards faster than the 
dimensionless solidus isotherm, z,,. At z,, the porosity 
and hence permieability falls to zero, so upward 
migrating liquid must accumulate below it, resulting 
in the development of a porosity wave. In the region 
immediately below a porosity wave, the liquid phase 
flux increases with height, the compaction term is posi- 
tive, so the porosity locally decreases. If the relative 
rate of liquid transport is sufficiently high that the 
compaction term in equation (47) dominates the con- 
duction term, then trailing porosity waves develop, 
because compaction leads to a reduction in the per- 
meability for which the creation of liquid by phase 
change cannot compensate. This acts as a local restric- 
tion to liquid transport, below which liquid accumu- 
lates and a new porosity wave develops. As the relative 
rate of liquid transport increases, so the local com- 
paction rate below an incipient porosity wave increas- 
ingly outstrips the rate of phase change, leading to an 
increase in the warve frequency. 

When K,~ becomes very small, the conductive heat 
transport term in equation (47) becomes very small. 
Consequently, too little liquid is produced by phase 
change for a large amplitude porosity wave to develop. 
The generally low permeabilities inhibit phase trans- 
port, so phase velsocities are low, the net phase velocity 
is small, and the pseudo-advective term in the energy 
conservation equation (37) is also small. Conse- 
quently, heat transport is dominated by conduction 
for small values of K,~, as observed in Fig. 2. 

For the case Ste = 0, the pseudo-advective source 
term in equation (47) exerts maximum influence on 
the porosity distribution. Figure 3(e) illustrates the 
effect of this, and should be compared with Fig. 3(c) ; 
the most significant differences are that the amplitude 
of the leading porosity wave is reduced, and the wave 
frequency increased. Because aejaz is always negative, 
if ]wrl > ]w,J, the pseudo-advection term in equation 
(47) is negative, and so acts to reduce the porosity. 
Physically, this is because the rate at which liquid is 
migrating upwards (w,) into cooler regions and freez- 
ing is greater than the rate at which solid is migrating 
downwards (w,) into hotter regions and melting. 
Consequently, 11:s~ liquid is produced by phase 
change, and porosity waves are more efficiently gen- 
erated by compaction. 

The effect of reducing u, is illustrated by Fig. 3(f), 
which again should be compared with Fig. 3(c). The 
amplitude of the leading porosity wave is similar in 
both cases, but the wave frequency is increased. This 

is because, over the range 0 < cp < 0.8, K,~ effectively 
varies with cp as 

K,, - ~/c$I~‘~. (50) 

Consequently, reducing cp at constant rc,* is quali- 
tatively similar to reducing K,~ at constant cp, because 
reducing cp causes the range of values of K,~ available 
from varying the other constituent variables to be 
shifted upwards. The changes are quantitatively 
different because cp also appears independently in the 
momentum conservation equation (38). 

Figure 4(a) shows dimensionless liquid and matrix 
velocities for the case K,~ = 1, Ste = 1, and cp = 0.5, 
after 30 time units, and should be compared with 
Fig. 3(c). Positive liquid velocities reflect the upwards 
migration of buoyant liquid ; negative solid velocities 
reflect the downwards migration of matrix. Changes 
in velocity correlate with changes in porosity, because 
the permeability is governed by the local porosity. 
Figure 4(b) shows the dimensionless compaction rate 
(c) and matrix strain rate (aw,/az), for the same par- 
ameters, and should again be compared with Fig. 
3(c). Negative compaction rates above local porosity 
maxima demonstrate that the porosity is increasing; 
conversely, positive compaction rates below local 
porosity maxima demonstrate that the porosity is 
decreasing. The association of negative and positive 
compaction rates with each porosity wave causes new 
waves to develop below existing waves, and existing 
waves to migrate upwards. The effect of this on the 
matrix is demonstrated by the matrix strain rate ; 
negative compaction rates correlate with positive 
(dilating) strain rates, and vice-versa. 

3.3. Increase in maximum porosity with time : forma- 
tion of a slurry 

If the amplitude of the porosity waves continually 
increases with time, then the local volume fraction 
may eventually exceed the CMF, in which case the 
contiguity of the solid matrix grains will break down, 
and the rheological description of that part of the 
mixed phase region will change from mush to slurry 
[4, 91. The mush-slurry transition is important, 
because the liquid fraction of the slurry has effectively 
segregated from the mush. A slurry is mobile, and if 
a suitable route is made available, may migrate away 
from the mushy zone. 

Figure 5 shows a representative selection of the 
maximum normalized porosity against time curves. 
For large K,~ (2 lo’), the maximum porosity changes 
little with time [Fig. 5(a)]. For K,~ between - lo4 and 
- 10e3, the rate of increase of maximum porosity is 
rapid with time [Fig. 5(b) and (c)] ; for small values 
of K,~ (< 10e4), the maximum porosity initially falls 
until the slope abruptly changes and the maximum 
porosity begins to increase, although the rate of 
increase is slow [Fig. 5(d)]. Because the momentum 
conservation equation (38) is valid only if cp < CMF, 
the mush-slurry transition is possible only in systems 



weld naem~aq s~ayp aps ws?qe aloN .(B) 0 = z )e UO~EJJ aumloA pmb!l umpqynba aql 01 

pazyermou s! dl!soxod ‘1 = ats ‘saw3 lie uI ‘+-JI = +i (p) f 1 = %i (3) f fjo[ = W (q) : so~ = % (e) : qp3 
‘sasm ~‘0 pue S.0 = h aq1 .IOJ ‘amy ssaluo!suauup JO uogxm~ e S’I? QsoJod paz~leu~~ou umrn~x~~ ‘S ‘BLJ 

awg ssapopauna 
OS St OP SE of. sz oz 51 01 5 o. 

I I I I I I I I I 

(PI 

I = aIs 

I I I I I I I I I I 

awg ssaluo!suatu!a 
OS SP ot SE OE sz 02 S I 01 s 0 

I I I I I I I I I 10 

- (9) I = as _ z’~ 

001 =%I 
x -p’o m 
?I. 

- 9’0 g 

amp ssaluo!suauua 

1 I I 

amy ssaluoyuatma 

I I I I I I I I I 

.alox U!EJJS xyxu put? b) aim uoyedmo3 ssaluoyuauup (q) : sag!3olaa 
pyos pue pybg ssaluoyuauup (B) : sl!un amg 0~ Jaye ‘1 = als ‘S.0 = h ‘1 = Ban asw aql IOJ sllnsax ‘p ‘8!d 

QNlaA ssaluoyuauna 
1 SL’O 5’0 sz’o 

I------ 
< 

-===I 
-_-. 

__--- 
.===_-___ 

_ zp/"MP 

sz’o- so- SL’O- I- 

71 

I=% -5 pJ 
_. 

3 
a 2. 

-01 P 
> k 

L=- 
2 
E?: 

.--_______ _-- -51 ij 
8 -;LL_______N 

3 

---J 
oz 

(s> 
SZ 

E'O Z’O 

IM 



Transport of heat, mass and momentum 1045 
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~ogl0(Keff) 
Fig. 6. Segregation time as a function of K,~, for 

cp = CMF = 0.5, and cp = CMF = 0.3. Ste = 1. 

in which the maximum normalized porosity eventually 
exceeds 1; the results obtained indicate that slurry 
formation is possible for IC,~ in the range N 105- 
N 10-3. 

The model may be used to estimate the time 
required to initia,!e the mush-slurry transition, which 
we term the segregation time, by recording the time 
required for the porosity at any point to reach the 
CMF. For a system in local mechanical and thermo- 
dynamic equilibrium, the CMF lies in the range 
0.4-0.6 [14]. Figure 6 shows an example of the seg- 
regation time as a function of JC,~, for Ste = 1, with 
cp = CMF = 0.5 :and cp = CMF = 0.3. These are con- 
venient approximations to the situation in which the 
equilibrium liquid fraction at z = 0 (cp) lies frac- 
tionally below the CMF, and represent the shortest 
segregation times for the chosen parameters. Seg- 
regation times are shortest in the range 1 < rc=e < 104; 
the segregation time then increases with both decreas- 
ing and increasing K& A maximum dimensionless 
time of 100 was imposed, to avoid excessive com- 
putational expense. 

3.4. Compositional consequences of local thermo- 
dynamic equilibrium 

Figure 7(a) shows a plot of the normalized dimen- 
sionless temperature at the point of incipient mush- 
slurry transition as a function of K,~, for the system 
described in Section 3.3. For small K,~, the mush- 
slurry transition occurs in the coolest part of the mixed 
phase region just below the solidus isotherm. As K,= 
increases, the mush-slurry transition occurs in hotter 
parts of the mixed phase region, because the position 
of the porosity maximum lags further behind z,,. The 
temperature at the point of incipient mush-slurry 
transition depends upon the values of cp, rcfi and the 
value of the CM F. 

Heat transport is governed externally by IC,~ and 
Ste, and depends also upon the net phase velocity 
(NJ,+ w,). For large values of Ste, heat transport is 
dominated by phase transport over a wide range of 
values of K,~ Caution must therefore be exercised 
when describing the heat transport in a deformable 
mushy zone ; for many systems a conductive only for- 
mulation will be inadequate. The spatial distribution 
of the liquid volume fraction (porosity) depends upon 
the relative transport rates of heat and liquid, and for 
a specific value of cp is effectively governed by the 
magnitude of JC,* For a wide range of values of IC,~, 
the liquid fraction accumulates below the solidus iso- 
therm, and a porosity wave develops. The amplitude 
of this wave increases with time, until the contiguity 
of the solid matrix breaks down, and the rheological 
description of that part of the mixed phase region 
changes from mush to slurry. The composition of the 
slurry depends upon both the initial composition of 
the material, and the values of JC,~, qn, and the CMF. 
For rcsR < 102, the composition of the liquid fraction 
of the slurry corresponds to only a small fraction of 
equilibrium melting of the material, because incipient 
slurry formation occurs near the top of the mixed 
phase region where temperatures are low. 

The requirement of local thermodynamic equi- This paper was originally motivated by the need to 
librium allows the composition of the incipient slurry understand coupled phase change and phase transport 

to be deduced by combining Fig. 7(a) with empirical 
phase change data. Figure 7(b) shows an example of 
the equilibrium liquid phase composition in terms of 
oxides, for a common lower crustal rock. For a system 
with K,~ z 3, the dimensionless temperature at the 
point of slurry formation is 0 z 0.2 [Fig. 7(a)] ; the 
composition of the liquid fraction of the slurry at a 
dimensionless temperature of 0 x 0.2 would be 
described as granitic [Fig. 7(b)]. In like fashion, it may 
be deduced that, with increasing JC,~, the composition 
of the liquid part of the slurry would evolve to tonalitic 
through to granodioritic. The significant result is that, 
because the liquid phase in the porosity wave has 
thermodynamically equilibrated at low temperatures 
near the top of the mixed phase region, the com- 
position of the liquid fraction of the mobile slurry 
corresponds to only a small fraction (< 0.05GO.4) of 
equilibrium melting of the starting material, despite 
the liquid fraction in the slurry having accumulated 
until it exceeded the CMF. 

4. CONCLUSIONS 

The transport of heat, mass and momentum in a 
deformable much undergoing solid-liquid phase 
change has, for a simple 1-D system heated from 
below, been characterized in terms of four externally 
prescribed dimensionless parameters : the effective 
thermal diffusivity, K,~; the Stefan number, Ste ; the 
equilibrium liquid fraction at z = 0, cp (which is 
numerically equivalent to the dimensionless tem- 
perature at z = 0) ; and the exponent in the perme- 
ability relation, n. 
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Fig. 7. (a) Normalized dimensionless temperature at the position of incipient slurry formation, as a function 
of IC,~. cp = 0.5; CMF = 0.5; Ste = 1. Dimensionless temperature is normalized to the dimensionless 
temperature at z = 0 (cp). (b) Component oxide volume fractions as a function of normalized dimensionless 
temperature, for an andesitic greenstone. Plain lines plot on the left-hand ordinate axis ; dashed lines plot on 
the right hand ordinate axis. Data from [31]. Temperature is non-dimensionalized assuming T,, = 890°C; 

T,,q = 1170°C ; normalized using cp = 0.5. 

processes in geological systems, and the results 
obtained are significant because they provide an 
insight into the processes by which granitic, tonalitic 
and granodioritic melt compositions may segregate 
from partially molten rock in the lower crust. These 
compositions correspond to only small fractions of 
equilibrium melting of the source rock [3&32]. The 
results presented in Sections 3.2 and 3.3 indicate that 
melt will segregate from a partially molten rock with 
suitable thermal and physical characteristics, while 
Fig. 6 allows an estimate of the time required for 
segregation. The results presented in Section 3.4 indi- 
cate that the composition of the segregated melt will 
correspond to a small fraction of equilibrium melting 
of the source rock. 

The assumption that the pressures in the solid and 
liquid phases are equal, which leads to the equation 
governing conservation of linear momentum [equa- 
tion (1 I)], is valid only if the matrix has no strength. 
This is equivalent to assuming that the matrix creep 
rate is rapid compared to matrix strain rate. Dimen- 
sional matrix strain rates predicted by the model are 
of the order l/z, where z is the characteristic time ; 
values of l/z range from lo-*’ to 1O-3o s-’ for silicate 
rock phase change systems [equation (33)]. Data on 
liquid enhanced diffusional creep rates in silicate 
materials is limited ; the results of deformation exper- 
iments on an olivine matrix saturated with basaltic 
liquid indicate that the diffusional creep rate in small 
(- 10 pm) silicate grains, at porosities of - 0.08, must 
be rapid compared to the applied strain rate of - lop4 
s-’ [18]. The equivalent stress on a liquid saturated 
matrix of 1 mm silicate grains, typical of rocks in the 
crust, would result in a strain rate of - lo-” s-’ [18, 
equation (2)] ; this figure represents a best estimate of 

the maximum strain rate for which deformation by 
liquid enhanced diffusional creep in a partially molten 
silicate rock will satisfy the equal pressure approxi- 
mation. Strain rates predicted by the model are 10-20 
orders of magnitude less than this estimate, which 
indicates that the equal pressures approximation is 
robust. 

Phase compositions may be specified because of 
the assumption of local thermodynamic equilibrium. 
Maintenance of equilibrium requires that the rate at 
which thermal and chemical equilibrium is attained is 
rapid compared to the thermodynamic evolution of 
the mixed phase region. Rates of thermal equilibration 
are rapid in both geological and metallurgical sys- 
tems ; the kinetic limit on the rate of chemical equi- 
libration is species diffusion in the solid phase. The 
assumption of local thermodynamic equilibrium, 
therefore, limits the applicability of the model only to 
those systems in which diffusive rates are high, or 
thermodynamic evolution is slow. The high tem- 
peratures and extended duration of phase change in 
lower crustal melt zones suggests that the assumption 
of local thermodynamic equilibrium is justified in 
these systems, but it remains the most stringent limit 
on the general applicability of the model. 

The results presented in this paper are intended to 
identify some of the generic features of a deformable 
mush undergoing solid-liquid phase change, to facili- 
tate the development of more complex models. Future 
models will need to investigate the importance of ther- 
mal and compositional convection of the liquid phase, 
which causes decoupling of the solid and liquid phase 
velocities [25]. In the system discussed in this paper, 
the liquid is always at its solidus, and so its density 
is governed only by its composition; any change in 
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temperature causes a change in composition. Heating 
of the mush from below produces a stable com- 
positional density gradient in the liquid for materials 
in which increasing degrees of equilibrium melting 
produce liquid of increasing density. This is the case 
for most silicate rocks. Hence, this simple analysis 
indicates that convection of the liquid phase is unlikely 
within partially m.olten rocks which are heated from 
below. 

Future models will also need to investigate the 
possibility that fluid transport through a deformable 
matrix is an inherently 3-D problem. Wiggins and 
Speigelman [21] have developed solutions in 3-D to 
the problem of a ‘buoyant liquid migrating through a 
deformable matrix, in the absence of phase change 
(f, = 0), and in the limit of small background 
porosity. Their results indicate that an initially 1-D 
porosity wave will develop into groups of spherical, 
3-D porosity waves. However, they placed no con- 
straint on the verucal distance available for the devel- 
opment of 3-D waves. In our problem, a 1-D porosity 
wave forms only because the vertical extent of the 
mixed phase region is constrained by the position of 
the solidus isotherm ; the upward rate of migration of 
the leading wave I.S primarily governed by the upward 
rate of migration of the solidus isotherm rather than 
the dynamics of the deformable mush. Furthermore, 
phase change due to pseudo-advection will act to 
inhibit the devellopment of 3-D flow structures. In 
any region in which the upwards transport of liquid 
becomes focused, such as a chimney, the net phase 
velocity (w, + w,) increases, so the magnitude of the 
pseudo-advection term in equation (41) increases. 
This term acts to reduce the porosity, and hence per- 
meability, consequently inhibiting liquid transport. 
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